References

Abstract

The abundance of intelligent civilizations in the Galaxy is a longstanding question, often conceptualized as the problem of the lack of received communication. Estimates of the number of civilizations are generally guided by the Drake equation, despite the large uncertainties in its factors and its lack of a temporal nature. Alternative approaches use detailed numerical simulations of the galaxy and recipes for the stars and planets formation rates and for the origin of life, and rely on uncertain parameters. We present a statistical model for the abundance and duration of civilizations implemented through Monte Carlo simulations. We explore the hypothesis space of the model by a suite of simulations to analyze the emergence of communicating nodes and their causal connections. We based this on minimal assumptions and three free parameters, with focus on the proposed statistical properties of empirical models. Our analysis of the dependence of the rate of causal contacts on the mean number of civilizations, the mean lifespan distribution and the maximum distance a civilization can send signals, is considered to discuss the spatial and temporal structure of a populated galaxy within several scenarios. We find that, given the enormous distances involved, causal contacts between civilizations are very rare. The odds to make a contact in a few years of monitoring are low for most models, except for those of a galaxy densely populated with long-lived civilizations. The probability of causal contacts increases with the lifetime of civilizations much more significantly than with the number of active civilizations for a time window. We show that the maximum probability of making a contact occurs when a civilization gains the required communication technology.

Context

[5] [6] [7] [8] [11] [81] [82] [13] [16] [17] [18] [24] [23] [22] [20] [21] [25] [19] [26] [28] [29] [31] [32] [33] [35] [36] [37] [39] [40] [41] [43] [44] [45] [47] [48] [49] [56] [52] [51] [54] [53] [55] [50] [57] [58] [59] [60] [61] [62] [65] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [46] [42] [64] [63] [1] [4] [30] [38] [10] [12] [66] [34] [3] [9] [15] [2] [80] [14] [27]

1

Luis A. Anchordoqui and Susanna M. Weber. Upper limit on the fraction of alien civilizations that develop communication technology. arXiv e-prints, aug 2019. URL: http://arxiv.org/abs/1908.01335 https://ui.adsabs.harvard.edu/abs/2019arXiv190801335A, arXiv:1908.01335.

2

James Annis. An astrophysical explanation for the “GREAT SILENCE”. JBIS - Journal of the British Interplanetary Society, 52(1):19–22, jan 1999. URL: http://arxiv.org/abs/astro-ph/9901322, arXiv:9901322.

3

Stuart Armstrong and Anders Sandberg. Eternity in six hours: Intergalactic spreading of intelligent life and sharpening the Fermi paradox. Acta Astronautica, 89:1–13, aug 2013. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576513001148, doi:10.1016/j.actaastro.2013.04.002.

4

A. Balb. The spatiotemporal aspects of SETI. Mem. della Soc. Astron. Ital., 89:425, 2018. URL: https://ui.adsabs.harvard.edu/abs/2018MmSAI..89..425B/abstract.

5

Amedeo Balbi. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability. Astrobiology, 18(1):54–58, aug 2018. URL: http://arxiv.org/abs/1708.07433 http://dx.doi.org/10.1089/ast.2017.1652, arXiv:1708.07433, doi:10.1089/ast.2017.1652.

6

A. L. Barabási. Scale-free networks: A decade and beyond. Science (80-. )., 325(5939):412–413, 2009. URL: https://science.sciencemag.org/content/325/5939/412, doi:10.1126/science.1173299.

7

Martin T. Barlow. Galactic exploration by directed self-replicating probes, and its implications for the Fermi paradox. Int. J. Astrobiol., 12(1):63–68, jun 2013. URL: http://arxiv.org/abs/1206.0953 http://dx.doi.org/10.1017/S1473550412000419, arXiv:1206.0953, doi:10.1017/S1473550412000419.

8

Frederick Bloetscher. Using predictive Bayesian Monte Carlo- Markov Chain methods to provide a probablistic solution for the Drake equation. Acta Astronaut., 155:118–130, feb 2019. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576518314000, doi:10.1016/j.actaastro.2018.11.033.

9

Ermanno F. Borra. Searching for extraterrestrial intelligence signals in astronomical spectra, including existing data. Astronomical Journal, oct 2012. URL: http://arxiv.org/abs/1210.5986 http://dx.doi.org/10.1088/0004-6256/144/6/181, arXiv:1210.5986, doi:10.1088/0004-6256/144/6/181.

10

G. Brin. The great silence: the controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24(3):283–309, 1983. URL: https://ui.adsabs.harvard.edu/abs/1983QJRAS..24..283B/abstract.

11

Mark J. Burchell. W(h)ither the Drake equation? Int. J. Astrobiol., 5(3):243–250, jul 2006. URL: https://www.cambridge.org/core/product/identifier/S1473550406003107/type/journal{\_}article, doi:10.1017/S1473550406003107.

12

Jonathan Carroll-Nellenback, Adam Frank, Jason Wright, and Caleb Scharf. The Fermi Paradox and the Aurora Effect: Exo-civilization Settlement, Expansion, and Steady States. The Astronomical Journal, 158(3):117, aug 2019. arXiv:1902.04450, doi:10.3847/1538-3881/ab31a3.

13

Pratika Dayal, Martin Ward, and Charles Cockell. The habitability of the Universe through 13 billion years of cosmic time. arXiv e-prints, jun 2016. URL: http://arxiv.org/abs/1606.09224 https://ui.adsabs.harvard.edu/abs/2016arXiv160609224D, arXiv:1606.09224.

14

Vladimir Došović, Branislav Vukotić, and Milan M. Ćirković. Advanced aspects of Galactic habitability. Astronomy and Astrophysics, 2019. arXiv:1904.01062, doi:10.1051/0004-6361/201834588.

15

William H. Edmondson and Ian R. Stevens. The utilization of pulsars as SETI beacons. International Journal of Astrobiology, 2(4):231–271, 2003. doi:10.1017/S1473550403001666.

16

J. Emilio Enriquez, Andrew Siemion, Griffin Foster, Vishal Gajjar, Greg Hellbourg, Jack Hickish, Howard Isaacson, Danny C. Price, Steve Croft, David DeBoer, Matt Lebofsky, David MacMahon, and Dan Werthimer. The Breakthrough Listen Search for Intelligent Life: 1.1-1.9 GHz observations of 692 Nearby Stars. Astrophys. J., 849(2):104, sep 2017. URL: http://arxiv.org/abs/1709.03491 http://dx.doi.org/10.3847/1538-4357/aa8d1b, arXiv:1709.03491, doi:10.3847/1538-4357/aa8d1b.

17

Martyn J. Fogg. Temporal aspects of the interaction among the first galactic civilizations: The “interdict hypothesis”. Icarus, 69(2):370–384, feb 1987. URL: https://www.sciencedirect.com/science/article/pii/0019103587901126, doi:10.1016/0019-1035(87)90112-6.

18

D. H. Forgan. A numerical testbed for hypotheses of extraterrestrial life and intelligence. Int. J. Astrobiol., 8(2):121–131, oct 2009. URL: http://arxiv.org/abs/0810.2222, arXiv:0810.2222, doi:10.1017/S1473550408004321.

19

Duncan Forgan, Pratika Dayal, Charles Cockell, and Noam Libeskind. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation. Int. J. Astrobiol., 16(1):60–73, nov 2016. URL: http://arxiv.org/abs/1511.01786, arXiv:1511.01786, doi:10.1017/S1473550415000518.

20

Duncan H. Forgan. Spatio-temporal constraints on the zoo hypothesis, and the breakdown of total hegemony. Int. J. Astrobiol., 10(4):341–347, may 2011. URL: http://arxiv.org/abs/1105.2497 http://dx.doi.org/10.1017/S147355041100019X, arXiv:1105.2497, doi:10.1017/S147355041100019X.

21

Duncan H. Forgan. On the possibility of detecting class a stellar engines using exoplanet transit curves. JBIS - J. Br. Interplanet. Soc., 66(5-6):144–154, jun 2013. URL: http://arxiv.org/abs/1306.1672, arXiv:1306.1672.

22

Duncan H. Forgan. Can Collimated Extraterrestrial Signals be Intercepted? JBIS - J. Br. Interplanet. Soc., 67(6):232–236, oct 2014. URL: http://arxiv.org/abs/1410.7796, arXiv:1410.7796.

23

Duncan H. Forgan. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis. Int. J. Astrobiol., 16(4):349–354, aug 2017. URL: http://arxiv.org/abs/1608.08770 http://dx.doi.org/10.1017/S1473550416000392, arXiv:1608.08770, doi:10.1017/S1473550416000392.

24

Duncan H. Forgan. Exoplanet transits as the foundation of an interstellar communications network. Int. J. Astrobiol., 18(3):189–198, jul 2019. URL: http://arxiv.org/abs/1707.03730 https://www.cambridge.org/core/product/identifier/S1473550417000283/type/journal{\_}article, arXiv:1707.03730, doi:10.1017/S1473550417000283.

25

Duncan H. Forgan and Ken Rice. Numerical testing of the Rare Earth Hypothesis using Monte Carlo realization techniques. Int. J. Astrobiol., 9(2):73–80, jan 2010. URL: http://arxiv.org/abs/1001.1680, arXiv:1001.1680, doi:10.1017/S1473550410000030.

26

José G. Funes, Lucio Florio, Marcelo Lares, and Mariano Asla. Searching for Spiritual Signatures in SETI Research. Theol. Sci., 0(0):1–9, 2019. URL: https://doi.org/10.1080/14746700.2019.1632550, doi:10.1080/14746700.2019.1632550.

27

E. Galera, G. R. Galanti, and O. Kinouchi. Invasion percolation solves Fermi Paradox but challenges SETI projects. International Journal of Astrobiology, 18(4):316–322, aug 2019. doi:10.1017/S1473550418000101.

28

Nicolas Glade, Pascal Ballet, and Olivier Bastien. A stochastic process approach of the drake equation parameters. Int. J. Astrobiol., 11(2):103–108, dec 2012. URL: http://arxiv.org/abs/1112.1506 http://dx.doi.org/10.1017/S1473550411000413 https://www.cambridge.org/core/product/identifier/S1473550411000413/type/journal{\_}article, arXiv:1112.1506, doi:10.1017/S1473550411000413.

29

M. Gleiser. Drake equation for the multiverse: From the string landscape to complex life. Int. J. Mod. Phys. D, 19(8-10):1299–1308, feb 2010. URL: http://arxiv.org/abs/1002.1651 http://dx.doi.org/10.1142/S0218271810017949, arXiv:1002.1651, doi:10.1142/S0218271810017949.

30

R. Gobat and S. E. Hong. Evolution of galaxy habitability. Astron. Astrophys., may 2016. URL: http://arxiv.org/abs/1605.06627 http://dx.doi.org/10.1051/0004-6361/201628834, arXiv:1605.06627, doi:10.1051/0004-6361/201628834.

31

Guillermo Gonzalez. Habitable Zones in the Universe. Orig. Life Evol. Biosph., 35(6):555–606, dec 2005. URL: http://arxiv.org/abs/astro-ph/0503298 http://dx.doi.org/10.1007/s11084-005-5010-8 http://link.springer.com/10.1007/s11084-005-5010-8, arXiv:0503298, doi:10.1007/s11084-005-5010-8.

32

Guillermo Gonzalez, Donald Brownlee, and Peter Ward. The Galactic Habitable Zone: Galactic Chemical Evolution. Icarus, 152(1):185–200, jul 2001. doi:10.1006/icar.2001.6617.

33

Claudio Grimaldi. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way. Sci. Rep., 7(1):46273, apr 2017. URL: http://www.nature.com/articles/srep46273 http://arxiv.org/abs/1704.04028 http://dx.doi.org/10.1038/srep46273, arXiv:1704.04028, doi:10.1038/srep46273.

34

Claudio Grimaldi, Geoffrey W. Marcy, Nathaniel K. Tellis, and Frank Drake. Area coverage of expanding E.T. signals in the galaxy: SETI and Drake’s N. Publications of the Astronomical Society of the Pacific, may 2018. arXiv:1802.09399, doi:10.1088/1538-3873/aaac6a.

35

Jacob Haqq-Misra. Does the evolution of complex life depend on the stellar spectral energy distribution? arXiv e-prints, may 2019. URL: http://arxiv.org/abs/1905.07343 https://ui.adsabs.harvard.edu/abs/2019arXiv190507343H http://dx.doi.org/10.1089/ast.2018.1946, arXiv:1905.07343, doi:10.1089/ast.2018.1946.

36

Jacob Haqq-Misra and Ravi K. Kopparapu. The Drake Equation as a Function of Spectral Type and Time. Habitability of the Universe Before Earth, pages 307–319, may 2018. URL: http://arxiv.org/abs/1705.07816, arXiv:1705.07816, doi:10.1016/b978-0-12-811940-2.00013-7.

37

G. R. Harp, R. F. Ackermann, Alfredo Astorga, Jack Arbunich, Jose Barrios, Kristin Hightower, Seth Meitzner, W. C. Barott, Michael C. Nolan, D. G. Messerschmitt, Douglas A. Vakoch, Seth Shostak, and J. C. Tarter. The Application of Autocorrelation SETI Search Techniques in an ATA Survey. Astrophys. J., 869(1):66, dec 2018. URL: http://arxiv.org/abs/1506.00055 http://dx.doi.org/10.3847/1538-4357/aaeb98 http://stacks.iop.org/0004-637X/869/i=1/a=66?key=crossref.1f6820ec68000694fb8bcd53c2b566b2, arXiv:1506.00055, doi:10.3847/1538-4357/aaeb98.

38

Michael H. Hart. An Explanation for the Absence of Extraterrestrials on Earth. Quarterly Journal of the Royal Astronomical Society, 16:128, 1975. URL: https://ui.adsabs.harvard.edu/abs/1975QJRAS..16..128H/abstract, doi:10.1017/cbo9780511564970.003.

39

Natalie Hinkel, Hilairy Hartnett, Carey Lisse, and Patrick Young. An Interdisciplinary Perspective on Elements in Astrobiology: From Stars to Planets to Life. Bull. Am. Astron. Soc., 51(3):497, apr 2019. URL: http://arxiv.org/abs/1904.01092 https://ui.adsabs.harvard.edu/abs/2019BAAS…51c.497H, arXiv:1904.01092.

40

Michael Hippke. Interstellar communication. IV. Benchmarking information carriers. arXiv e-prints, nov 2017. URL: http://arxiv.org/abs/1711.07962, arXiv:1711.07962.

41

Marko Horvat. Calculating the probability of detecting radio signals from alien civilizations. Int. J. Astrobiol., 5(2):143–149, jun 2006. URL: http://arxiv.org/abs/0707.0011 http://dx.doi.org/10.1017/S1473550406003004, arXiv:0707.0011, doi:10.1017/S1473550406003004.

42

Marko Horvat, Anamari Nakić, and Ivana Otočan. Impact of technological synchronicity on prospects for CETI. Int. J. Astrobiol., 11(1):51–59, dec 2011. URL: http://arxiv.org/abs/1112.0423 http://dx.doi.org/10.1017/S1473550411000322 https://www.cambridge.org/core/product/identifier/S1473550411000322/type/journal{\_}article, arXiv:1112.0423, doi:10.1017/S1473550411000322.

43

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. -L. Barabasi. The large-scale organization of metabolic networks. Nature, 407(6804):651–654, oct 2000. URL: http://www.nature.com/articles/35036627 http://arxiv.org/abs/cond-mat/0010278 http://dx.doi.org/10.1038/35036627, arXiv:0010278, doi:10.1038/35036627.

44

Michael Lampton. Information-driven societies and Fermi’s paradox. Int. J. Astrobiol., 12(4):312–313, oct 2013. URL: https://www.cambridge.org/core/product/identifier/S1473550413000153/type/journal{\_}article, doi:10.1017/S1473550413000153.

45

Charles H. Lineweaver, Yeshe Fenner, and Brad K. Gibson. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way. Science (80-. )., 303(5654):59–62, jan 2004. URL: http://arxiv.org/abs/astro-ph/0401024 http://dx.doi.org/10.1126/science.1092322, arXiv:0401024, doi:10.1126/science.1092322.

46

Manasvi Lingam and Abraham Loeb. Relative Likelihood of Success in the Search for Primitive versus Intelligent Extraterrestrial Life. Astrobiology, 19(1):28–39, jan 2018. URL: http://arxiv.org/abs/1807.08879 http://dx.doi.org/10.1089/ast.2018.1936 https://www.liebertpub.com/doi/10.1089/ast.2018.1936, arXiv:1807.08879, doi:10.1089/ast.2018.1936.

47

Abraham Loeb, Rafael A. Batista, and David Sloan. Relative likelihood for life as a function of cosmic time. J. Cosmol. Astropart. Phys., 2016(8):040–040, aug 2016. URL: http://arxiv.org/abs/1606.08448 http://dx.doi.org/10.1088/1475-7516/2016/08/040 http://stacks.iop.org/1475-7516/2016/i=08/a=040?key=crossref.f4b14eb407d6b005f3cbb4235b2c77e0, arXiv:1606.08448, doi:10.1088/1475-7516/2016/08/040.

48

Abraham Loeb and Matias Zaldarriaga. Eavesdropping on radio broadcasts from galactic civilizations with upcoming observatories for redshifted 21 cm radiation. J. Cosmol. Astropart. Phys., oct 2007. URL: http://arxiv.org/abs/astro-ph/0610377 http://dx.doi.org/10.1088/1475-7516/2007/01/020, arXiv:0610377, doi:10.1088/1475-7516/2007/01/020.

49

Claudio Maccone. The KLT (Karhunen–Loève Transform) to extend SETI searches to broad-band and extremely feeble signals. Acta Astronaut., 67(11-12):1427–1439, dec 2010. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576510001487, doi:10.1016/j.actaastro.2010.05.002.

50

Claudio Maccone. The Statistical Drake Equation. Acta Astronaut., 67(11-12):1366–1383, dec 2010. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576510001499, doi:10.1016/j.actaastro.2010.05.003.

51

Claudio Maccone. A Mathematical Model for Evolution and SETI. Orig. Life Evol. Biosph., 41(6):609–619, dec 2011. URL: http://link.springer.com/10.1007/s11084-011-9260-3, doi:10.1007/s11084-011-9260-3.

52

Claudio MacCone. SETI and SEH (Statistical Equation for Habitables). Acta Astronaut., 68(1-2):63–75, jan 2011. URL: https://www.sciencedirect.com/science/article/pii/S0094576510002018, doi:10.1016/j.actaastro.2010.06.010.

53

Claudio MacCone. SETI, evolution and human history merged into a mathematical model. Int. J. Astrobiol., 12(3):218–245, jul 2013. URL: https://www.cambridge.org/core/product/identifier/S1473550413000086/type/journal{\_}article, doi:10.1017/S1473550413000086.

54

Claudio Maccone. Evolution and mass extinctions as lognormal stochastic processes. Int. J. Astrobiol., 13(4):290–309, oct 2014. URL: https://www.cambridge.org/core/product/identifier/S147355041400010X/type/journal{\_}article, doi:10.1017/S147355041400010X.

55

Claudio Maccone. Lognormals for SETI, Evolution and mass extinctions. Acta Astronaut., 105(2):538–546, dec 2014. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576514002458 http://adsabs.harvard.edu/abs/2014AcAau.105..538M, doi:10.1016/j.actaastro.2014.07.002.

56

Claudio Maccone. Statistical Drake-Seager Equation for exoplanet and SETI searches. Acta Astronaut., 115:277–285, 2015. doi:10.1016/j.actaastro.2015.05.005.

57

Héctor García Martín and Nigel Goldenfeld. On the origin and robustness of power-law species-area relationships in ecology. Proc. Natl. Acad. Sci. U. S. A., 103(27):10310–10315, 2006. URL: https://www.pnas.org/content/103/27/10310, doi:10.1073/pnas.0510605103.

58

Michael Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Math., 1(2):226–251, 2004. URL: https://doi.org/10.1080/15427951.2004.10129088, doi:10.1080/15427951.2004.10129088.

59

Ian S. Morrison and Michael G. Gowanlock. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life. Astrobiology, 15(8):683–696, aug 2015. URL: http://www.liebertpub.com/doi/10.1089/ast.2014.1192 https://ui.adsabs.harvard.edu/abs/2014ebi..conf..5.4M/abstract, doi:10.1089/ast.2014.1192.

60

Giuseppe Murante, Pierluigi Monaco, Stefano Borgani, Luca Tornatore, Klaus Dolag, and David Goz. Simulating realistic disc galaxies with a novel sub-resolution ISM model. Mon. Not. R. Astron. Soc., 447(1):178–201, feb 2015. URL: http://academic.oup.com/mnras/article/447/1/178/988838/Simulating-realistic-disc-galaxies-with-a-novel, doi:10.1093/mnras/stu2400.

61

MEJ Newman. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys., 46(5):323–351, sep 2005. URL: https://doi.org/10.1080/00107510500052444 http://www.tandfonline.com/doi/abs/10.1080/00107510500052444, doi:10.1080/00107510500052444.

62

William I. Newman and Carl Sagan. Galactic civilizations: Population dynamics and interstellar diffusion. Icarus, 46(3):293–327, jun 1981. URL: https://www.sciencedirect.com/science/article/pii/0019103581901354, doi:10.1016/0019-1035(81)90135-4.

63

Ted Peters. Outer space and cyber space: meeting ET in the cloud. Int. J. Astrobiol., 17(4):282–286, oct 2018. URL: https://www.cambridge.org/core/product/identifier/S1473550416000318/type/journal{\_}article http://adsabs.harvard.edu/abs/2018IJAsB..17..282P, doi:10.1017/S1473550416000318.

64

Nikos Prantzos. A joint analysis of the Drake equation and the Fermi paradox. Int. J. Astrobiol., 12(3):246–253, jan 2013. URL: http://arxiv.org/abs/1301.6411 http://dx.doi.org/10.1017/S1473550413000037, arXiv:1301.6411, doi:10.1017/S1473550413000037.

65

Sohrab Rahvar. Cosmic initial conditions for a habitable universe. Mon. Not. R. Astron. Soc., 470(3):3095–3102, aug 2017. URL: http://arxiv.org/abs/1608.00967 http://dx.doi.org/10.1093/mnras/stx1448, arXiv:1608.00967, doi:10.1093/mnras/stx1448.

66

Rodrigo Ramirez, Marco A. Gómez-Muñoz, Roberto Vázquez, and Patricia G. Núñez. New numerical determination of habitability in the Galaxy: the SETI connection. International Journal of Astrobiology, pages 1–10, mar 2017. doi:10.1017/S1473550417000027.

67

Sara Seager. The search for habitable planets with biosignature gases framed by a ‘Biosignature Drake Equation’. Int. J. Astrobiol., 17(4):294–302, oct 2018. URL: https://www.cambridge.org/core/product/identifier/S1473550417000052/type/journal{\_}article, doi:10.1017/S1473550417000052.

68

Seth Shostak. What ET will look like and why should we care. Acta Astronaut., 67(9-10):1025–1029, nov 2010. URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576510002195, doi:10.1016/j.actaastro.2010.06.028.

69

M. V. Simkin and V. P. Roychowdhury. Theory of Aces: Fame by Chance or Merit? J. Math. Sociol., 30(1):33–42, jan 2006. URL: https://doi.org/10.1080/00222500500333258 http://www.tandfonline.com/doi/abs/10.1080/00222500500333258, doi:10.1080/00222500500333258.

70

Reginald D. Smith. Broadcasting but not receiving: Density dependence considerations for SETI signals. Int. J. Astrobiol., 8(2):101–105, jan 2009. URL: https://www.cambridge.org/core/product/identifier/S1473550409990097/type/journal{\_}article http://arxiv.org/abs/0901.3863 http://dx.doi.org/10.1017/S1473550409990097, arXiv:0901.3863, doi:10.1017/S1473550409990097.

71

Evan Solomonides, Lisa Kaltenegger, and Yervant Terzian. A Probabilistic Analysis of the Fermi Paradox. 228th AAS, San Diego, 228:1–14, jun 2016. URL: http://arxiv.org/abs/1604.07687, arXiv:1604.07687.

72

Jonathan Starling and Duncan H. Forgan. Virulence as a model for interplanetary and interstellar colonization-parasitism or mutualism? Int. J. Astrobiol., 13(1):45–52, nov 2014. URL: http://arxiv.org/abs/1311.0759 http://dx.doi.org/10.1017/S1473550413000347, arXiv:1311.0759, doi:10.1017/S1473550413000347.

73

Jill Tarter. The Search for Extraterrestrial Intelligence (SETI). Annu. Rev. Astron. Astrophys., 39(1):511–548, sep 2001. URL: http://www.annualreviews.org/doi/10.1146/annurev.astro.39.1.511, doi:10.1146/annurev.astro.39.1.511.

74

Jill Tarter, Peter Backus, Samantha Blair, Jim Cordes, Gerald Harp, Richard Conn Henry, Paul Horowitz, Andrew W Howard, Tom Kilsdonk, Eric J Korpela, Joseph Lasio, Steven Levin, G Seth Shostack, and Dan Werthimer. Advancing the Search for Extraterrestrial Intelligence. Astro2010 Astron. Astrophys. Decad. Surv. Sci. White Pap. no. 294, 2009. URL: http://adsabs.harvard.edu/abs/2009astro2010S.294T.

75

Melissa Adams VanHouten. Is there anybody out there? Lancet Gastroenterol. Hepatol., 3(6):382, jun 2018. URL: http://arxiv.org/abs/1706.01907, arXiv:1706.01907, doi:10.1016/S2468-1253(18)30137-7.

76

B. Vukotić, D. Steinhauser, G. Martinez-Aviles, M. M. Ćirković, M. Micic, and S. Schindler. ‘Grandeur in this view of life’: N -body simulation models of the Galactic habitable zone. Mon. Not. R. Astron. Soc., 459(4):3512–3524, jul 2016. URL: https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw829, doi:10.1093/mnras/stw829.

77

Branislav Vukotić and Milan M. Ćirković. Astrobiological Complexity with Probabilistic Cellular Automata. Orig. Life Evol. Biosph., 42(4):347–371, jun 2012. URL: http://link.springer.com/10.1007/s11084-012-9293-2 http://arxiv.org/abs/1206.3467 http://dx.doi.org/10.1007/s11084-012-9293-2, arXiv:1206.3467, doi:10.1007/s11084-012-9293-2.

78

Clifford Walters, Raymond A. Hoover, and R.K. Kotra. Interstellar colonization: A new parameter for the Drake equation? Icarus, 41(2):193–197, feb 1980. URL: https://linkinghub.elsevier.com/retrieve/pii/0019103580900032, doi:10.1016/0019-1035(80)90003-2.

79

Jason T. Wright, Kimberly M. S. Cartier, Ming Zhao, Daniel Jontof-Hutter, and Eric B. Ford. the Ĝ Search for Extraterrestrial Civilizations With Large Energy Supplies. Iv. the Signatures and Information Content of Transiting Megastructures. Astrophys. J., 816(1):17, oct 2015. URL: http://arxiv.org/abs/1510.04606 http://dx.doi.org/10.3847/0004-637X/816/1/17, arXiv:1510.04606, doi:10.3847/0004-637x/816/1/17.

80

Jason T. Wright, Shubham Kanodia, and Emily Lubar. How Much SETI Has Been Done? Finding Needles in the n -dimensional Cosmic Haystack. The Astronomical Journal, 156(6):260, nov 2018. arXiv:1809.07252, doi:10.3847/1538-3881/aae099.

81

Milan M. Ćirković. The temporal aspect of the Drake equation and SETI. Astrobiology, 4(2):225–231, jun 2004. URL: http://www.liebertpub.com/doi/10.1089/153110704323175160 http://arxiv.org/abs/astro-ph/0306186 http://dx.doi.org/10.1089/153110704323175160 https://ui.adsabs.harvard.edu/abs/2004AsBio…4..225C/abstract, arXiv:0306186, doi:10.1089/153110704323175160.

82

Simon Conway Morris. Three explanations for extraterrestrials: sensible, unlikely, mad. Int. J. Astrobiol., 17(4):287–293, oct 2018. URL: https://www.cambridge.org/core/product/identifier/S1473550416000379/type/journal{\_}article, doi:10.1017/S1473550416000379.